
A Logic of Induction 

Colin Howson 

Philosophy of Science, Vol. 64, No. 2 (Jun., 1997), 268-290. 

Stable URL: 
http://links.jstor.org/sici?sici=003 1-8248%28 199706%2964%3A2%3C268%3AALOI%3E2.O.CO%3B2-V 

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at 
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you 
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and 
you may use content in the JSTOR archive only for your personal, non-commercial use. 

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or 
printed page of such transmission. 

Philosophy of Science is published by The University of Chicago Press. Please contact the publisher for further 
permissions regarding the use of this work. Publisher contact information may be obtained at 
http://www.j stor.org/journals/ucpress.html. 

Philosophy of Science 
01997 Philosophy of Science Association 

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. 
For more information on JSTOR contact jstor-info@umich.edu. 

02003 JSTOR 

http://www.jstor.org/ 
Thu Oct 30 08:42:07 2003 



A Logic of Induction' 

Colin Howsont 
Department of Philosophy, Logic, and Scientific Method, 

London School of Economics and Political Science 

1. Probabilism. Statistics is probably the last discipline the ordinary 
person would associate with ideological wars, but one has been raging 
there for the last thirty years and more. Until recently the Classical, 
also known as Frequentist, theory of statistical inference dominated. 
But gradually a quite different approach has attracted adherents. This, 
named the Bayesian theory after the eighteenth-century English cler- 
gyman, Thomas Bayes, is a phoenix, reborn from the theory of induc- 
tive inference dominant from the mid-eighteenth to the late nineteenth 
century, which said that the measure of confidence proper to employ 
in an uncertain proposition is its probability (the idea goes back well 
beyond Bayes; in his great Ars Conjectandi, published posthumously 
in 1715, James Bernoulli stated that probability is degree of certainty 
(Part IV, Chapter 11)). 

Such an identification seems entirely natural: probability is a mea- 
sure of uncertainty in ordinary speech. From there it seems an obvious 
step to saying that ifnothing is known that should discriminate among 
the possible values of a real-valued parameter Z lying in a closed in- 
terval, for example [1/3,3], then uncertainty should be spread evenly 
along that interval, in this case with a uniform density 318. But if noth- 
ing is known about Z then, equally, nothing is known about W = Z-l, 
whose range is also [1/3,3]. However, it is not difficult to see that prob- 
ability cannot be uniformly distributed over W's values if it is uniformly 
distributed over Z's (suppose it is and compute the probability of the 
equivalent propositions Z > 2 and W < 112). 

Such 'paradoxes' started to be noticed in the nineteenth century. The 
one above is a version of the winelwater paradox, where one's infor- 
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mation is only that wine is mixed with water in some ratio between one 
part water to three parts wine and three parts water to one part wine; 
Z and W represent the inverse ratios of each other. A similar and 
equally famous 'paradox' is due to the French mathematician Ber- 
trand, who was interested in the probability that the length of a 'ran- 
domly' chosen chord in a circle is greater than that of the side of the 
inscribed equilateral triangle. The position of the chord can be specified 
in (at least) the following three ways: (i) the distance between the center 
of the chord and that of the circle, (ii) the angle the chord makes with 
a tangent to the circle at its end point, and (iii) the position of the 
center of the chord within the circle. But as Bertrand showed, uniform 
probability densities cannot simultaneously be assigned each of these. 

Such problems represented a serious conceptual threat, ultimately a 
fatal one, to the probabilistic theory developed by Bayes and Laplace, 
for that theory was squarely based on the use of uniform distributions 
to represent an initial lack of knowledge. In a profoundly original pa- 
per (1763)' Bayes had derived the posterior distribution of a binomial 
parameter, i.e., he had derived, in modern terminology, the form of the 
density over the possible values in [0,1] of a physical probability pa- 
rameter conditional on evidence stating how many times in n obser- 
vations the event with that probability had been observed. Laplace 
gave a more modern, analytical derivation, in which he used the fol- 
lowing version of what has become known as Bayes's Theorem: 

where f(p) is the prior density function, k is a normalizing constant and 
e,, states that the event had been observed r times out of n. Laplace's 
model (an uncountably infinite urn with 'proportion' p of black tickets) 
allowed him to assume, as had Bayes, that the successive observations 
are independent with a fixed probability p of observing the event in 
question (in the model, drawing a black ticket). 

Granted that assumption, k-I = P(e,,) is equal to "C,pr(l - p)"-', 
leaving the prior density f(p) as the only unknown. Here Laplace fol- 
lowed Bayes and adopted the postulate, discussed in a Scholium in 
Bayes' paper, that f(p) is constant, and hence equal to 1. Bayes justified 
the uniform distribution of p precisely with the argument that if we 
assume that we know nothing initially about the value of p-and hence 
represent it by a uniform prior density-then we have a way, if the 
calculation can be performed, of systematically incorporating the em- 
pirical information supplied the observational data e,, in the posterior 
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distribution of p. And as we see, with the uniform prior that calculation 
can be performed. 

Laplace was further able to derive the famous Rule of Succession: 
that the probability of observing the event at the next trial, conditional 
on the evidence e,,, is equal to (r + l)/(n + 2). The dependence of this 
probability on the sample parameters r and n made this an especially 
remarkable result in the late eighteenth century, for it seemed to refute 
Hume. Laplace seemed to have proved that induction, reasoning from 
past to future, was valid, and without assuming in any way what it set 
out to justify; indeed, insofar as it can be called an assumption, all that 
is assumed is an evenly distributed ignorance (a very good discussion 
of the mathematical and philosophical background can be found in 
Chapter 1 of Earman 1992, in which Bayes's posterior distribution for 
p is derived). 

Yet, as we have seen, probabilistically-modelled ignorance appears 
to generate inconsistencies. The alternative to an 'ignorance' distribu- 
tion is to represent one's non-null current state of information by the 
prior distribution, and update this distribution, by means of Bayes' 
theorem, on receipt of new information. The trouble with this idea is 
that the probabilistic representation of a state of information is sup- 
posed to be inferred, not assumed as a datum. If it is assumed, it cannot 
be held to be objectively determined, and hence any particular choice 
of prior must give that prior a subjective character, to be inherited by 
the posterior distribution. While this may be acceptable in the context 
of a personal decision problem, it certainly was not felt to be so in the 
context of scientific inference, in which the degree to which evidence 
supports a hypothesis is calculated. In R. A. Fisher's (highly influen- 
tial) words, the reliance on uniform prior distributions 

leads to apparent mathematical contradictions. In explaining these 
contradictions away, advocates of inverse probability seem forced 
to regard mathematical probability . . . as measuring merely psy- 
chological tendencies, theorems respecting which are useless for 
scientific purposes (1947, 6-7) 

A desire to avoid the sort of subjectivism condemned by Fisher led 
the geophysicist Sir Harold Jeffreys in the 1920s and 1930s to consider 
ways of formulating more satisfactory objective criteria for determin- 
ing prior distributions. One such criterion was that simpler hypotheses 
should receive larger prior probabilities, where a hypothesis is simpler 
the fewer independent adjustable parameters it contains. This he called 
the Simplicity Postulate. A problem with it is that it is difficult to im- 
plement consistently, and Jeffreys himself proposed other criteria ac- 
tually inconsistent with it. One of these, which aroused and still arouses 
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a good deal of interest, is that of invariance. A rule for assigning a 
prior distribution to a parameter t is invariant if it assumes the same 
form under invertible differentiable transformations of t. In other 
words, the distribution is one which can be specified in a coordinate- 
invariant way. An idea pursued by Jeffreys was to combine the re- 
quirement of ignorance and that of invariance by constructing a rule 
for assigning priors which depends only on the probability model for 
the distribution of the observation variable X, via its class of condi- 
tional densities for X given a parameter t, and any smooth reparame- 
trization oft .  

One such invariant rule, now known as Jeffreys' rule, says that the 
prior for t should be the square root of the Fisher information, i.e. of 
the expected value, with respect to x given t, of 

where p(x1t) is the density assigned by the model at the point x, given 
t, i.e., the likelihood of t given x. The priors that arise from this rule 
are often called Jeffreys priors. Where I is the information, t the pa- 
rameter(~), and s is any differentiable transformation of t, we have that 
I (~) l /~ds = I(t)lDdt. Consequently, Jeffreys's rule "could be stated for 
any law that is differentiable with respect to all parameters in it, and 
would have the property that the total probability in any region of the 
[the parameter t] would be equal to the total probability in the corre- 
sponding region of [the new parameter s]; in other words, it satisfies 
the rule that equivalent propositions have the same probability" (Jef- 
freys 1961, 181). 

Invariant rules are not vulnerable to the transformational para- 
doxes. On the other hand any particular choice of one, like Jeffreys' 
rule, seems rather ad hoc. And Jeffreys' rule can give strange results: 
for example, the joint prior for the mean and standard deviation of a 
normally distributed variate is (constant, op2), whereas taken sepa- 
rately they are constant and o- l respectively. Jeffreys priors are also 
attended by more or less severe technical problems. First, they may not 
exist. Even where they do, they are often improper, i.e., their integrals 
diverge. The Jeffreys priors for the mean and standard deviation of a 
normal variate are clearly both improper. Improper priors are some- 
times justified as approximations to proper distributions within the 
intended range, but when they are justified by some general principle 
this defense is hardly available. And there are other problems of con- 
sistency; see Dawid, Stone, and Zidek 1973. Formally and otherwise, 
the situation cannot really be called a satisfactory one. 

A somewhat different approach to invariance was subsequently pro- 
posed by the physicist E. T. Jaynes. Jaynes claimed that an inference 
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problem will characteristically determine a group of transformations 
of relevant quantities under which the problem remains essentially un- 
altered, and hence under which the target distribution should be in- 
variant. Jaynes called a problem well-posed if there is a unique distri- 
bution invariant under this group. He claims that Bertrand's problem 
is well-posed. "Neither Bertrand's original statement nor our restate- 
ment in terms of straws [thrown into a circle to represent randomly 
drawn chords] specifies the exact size of the circle, or its exact location" 
(1973, 480). The solution distribution should, therefore, be invariant 
under scale and location transformations, and Jaynes shows that these 
constraints determine it uniquely up to a multiplicative constant. 

Employing the symmetries implicit in the statement of a problem 
sounds an impressive way to obtain an objectively determined prior. 
But on analysis it is not clear that it marks any advance. Suppose that 
the required prior distribution is of a parameter t, and the problem is 
stated in the form cD(t). Let s(t) be any invertible transformation oft .  
Then, modulo some mathematics, there is a logically equivalent for- 
mulation cDr(s); it is the same problem, merely differently expressed. 
But then we should, it seems, require the prior distributions of s and t 
be the same, for any s, which is impossible. 

Jaynes avoids this conclusion by restricting those transformations 
under which the problem remains unaltered to a proper subgroup of 
the group of all invertible continuous transformations. For example, 
in the Jaynesian literature, where t is a parameter representing a physi- 
cal magnitude, the lack of any specification of scale for the measure- 
ment is usually taken to mean that f(t) should be invariant under trans- 
formations of the form at, a > 0, determining f(t) as proportional to 
t-  (but see Milne 1983, 52-53). But why consider only ratio scales? 
Clearly, it all depends what one means by 'equivalent formulations of 
the problem.' If, as I believe, it is arbitrary to restrict equivalence to 
some proper subspecies of logical equivalence, then no problem is well- 
posed. 

Jaynes's other well-known proposal for determining priors, the rule 
of maximum entropy, founders ultimately on the same problem. This 
rule instructs choosing among all the possible distributions consistent 
with the available background information that which has maximum 
entropy subject to the constraints the information imposes, wherever 
a unique such distribution exists (Jaynes 1968). Problems of existence 
aside, the only entropy measure which consistently generalizes to con- 
tinuous densities f(t) is the so-called cross-entropy, i.e., the expected 
value of -log[f(t)/g(t)], logarithm to any base, where g is a reference 
distribution which Jaynes suggests should be chosen according to his 
invariance theory above (ibid.). And so we are back again. It seems 



A LOGIC OF INDUCTION 273 

fair to say that the problem of representing methodological ignorance 
has not been overcome. 

2. Fisher and Neyman-Pearson. The problem of objective priors seems 
to be a difficult if not insoluble one. But no theory gets abandoned 
until an acceptable alternative is available to take its place. Such an 
alternative to the probabilistic account appeared, at any rate for stat- 
isticians, in the second and third decades of this century, when in a 
remarkable series of papers Fisher laid the foundations for what ap- 
peared to be an objective, non-probabilistic theory of statistical infer- 
ence. Fisher substituted for the idea that a hypothesis asserting some 
systematic effect could be rendered probable by appropriate observa- 
tions, the idea that a null hypothesis h,, asserting that no such effect 
exists, could be safely rejected by a test of significance. An outcome x 
of such a test is said to be significant at the p% level if the probability 
of the set of outcomes at least as discordant with h, as x is at most 
p1100 according to h,. How discordant any observation y is with h, is 
typically the likelihood of h, relative to a the value t(y) of a suitable 
test statistic t (the likelihood of h, relative to t(y) is the probability 
density of t(y) according to h,). 

An outcome significant at a small enough significance level is a 
ground for rejecting h, because such an outcome would almost never 
occur were h, true. Thus a straightforward falsificationist theory of 
sound inference seemed to have been discovered by Fisher, and by 
contrast with the earlier probabilistic theory, wholly objective because 
framed in terms of objective statistical probabilities. Small wonder that 
Fisher's theory swept the earlier one aside. By one of those prescient 
strokes of history, at the same time and independently of Fisher, Karl 
Popper in Vienna was putting the finishing touches to his similarly 
falsificationist theory of test-evaluations of deterministic hypotheses, 
also designed to replace the old theory based on prior and posterior 
probabilities. 

Fisher's theory was not without its own problems, however, and it 
was the analysis of these that produced the theory of statistical infer- 
ence, the Frequentist theory, that in time absorbed it and then domi- 
nated the field after the Second World War. Jerzy Neyman who, to- 
gether with E. S. Pearson, was responsible for this development of 
Fisher's original theory, pointed out that however desirablk from the 
point of view of the various criteria defined by Fisher was a test statistic 
t, a suitable transformation of t  determined another statistic t' with the 
same desirable test characteristics, except that a significant outcome 
with respect to t is not significant with respect to t', and vice versa 
(Neyman 1952, 43-54). 
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Neyman and Pearson's solution of the problem is developed from a 
denial that hypotheses can be tested in isolation. It can be argued that 
the claim is anyway implicit in the rationale of significance tests of the 
null hypothesis: knocking out h, is regarded as establishing the alter- 
native hypothesis of systematic effect. At any rate, once an alternative 
h, to the null h, is introduced explicitly in a test of h, against h,, it 
becomes possible to design tests according to the desideratum of si- 
multaneously keeping small the chances of two important types of er- 
ror, called type 1 and type 2 errors respectively, of incorrectly rejecting 
h, when it is true, and of incorrectly accepting it when it is false. One 
minus the chance of the type 2 error is known as the power of the test. 

Suppose that h, and h, are regarded, at any rate given current knowl- 
edge, as exhausting the class of plausible alternatives. If we identify for 
the time being the chance of a type 2 error with the probability of 
accepting h, when h, is true, then if both h, and h, generate probability 
distributions over a test statistic t, it is possible to prove Neyman and 
Pearson's Fundamental Lemma: there exists a unique region, a 'best 
critical region', in the range o f t  for rejecting h, which minimizes the 
probability of a type 2 error for any assigned probability of a type 1 
error. The probability of the type 1 error is reckoned according to h, 
and that of the type 2 error according to h,. The Fundamental Lemma 
automatically solves the problem of the previous paragraph. The best 
critical region is always defined by an inequality of the form p,(t)/p,(t) 
G k, where k is determined by the preassigned probability of type 1 
error and p, and p, are the probability densities determined by h, and 
h,. This inequality is invariant under all continuous invertible trans- 
formations of t (since the Jacobian appears in both numerator and 
denominator and consequently cancels), and hence under that which 
caused the problem for Fisher's own test criteria. 

Suppose, however, that the hypothesis we want to test h, against is 
not one which determines a unique probability distribution, but one 
instead which is equivalent to an entire family H of distributions al- 
ternative to the pure chance distribution specified by h,. For example, 
the alternative to h, may merely claim a systematic effect of a more or 
less extensive type. However, it may still be possible to show that there 
exists a region in the outcome space most powerful against all members 
of H. Failing that, textbooks of the Neyman-Pearson theory propose 
subsidiary criteria. It is not the details of the Neyman-Pearson theory 
that I am concerned with here, however, but the central thesis it and 
Fisher's theory oppose to probabilism: that sound inductive rules exist 
which do not appeal to the probabilities of the hypotheses to be eval- 
uated empirically, i.e., to what are often called epistemic probabilities, 
or what Carnap called probabilities,, but only to the statistical prob- 
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abilities, probabilities, (Carnap), determined by the hypotheses them- 
selves. We shall resume the discussion in Section 4. 

3. Probabilism Reborn. It is now time to take up again the probabilist(,) 
story again. In the 1920s, two people, Frank Ramsey in Cambridge 
(England) and Bruno de Finetti in Rome, working independently, cre- 
ated a revolution within probabilism. They both started by trying to 
explain what all their predecessors had simply taken to be axiomatic, 
that the structure of degrees of certainty is that of mathematical prob- 
ability. The upshot of their investigation was that the probabilistic 
structure is a condition of consistency in the individual's evaluations 
of uncertainty. This led to a completely novel probabilistic theory of 
inductive inference, called the subjective Bayesian theory. 

Ramsey and de Finetti proceeded in different ways that have since 
generated two quite different lines of research, one utility-theoretic, the 
other based on rational betting strategies. The second, the one I shall 
outline here, stems from a classic paper of de Finetti (1937). This starts 
by characterizing an individual's uncertainty in terms of equilibrating 
betting quotients. Some terminology: a bet is a contract in which one 
individual X contracts to obtain from another Y a sum Q if some 
proposition a is true, and pay them a sum R if a is false. The odds 
accepted by X on a are R:Q, those accepted by Y against a are Q R .  
The normalized odds p = R:(R + Q) are called the betting quotient 
on a, and S = R + Q is called the stake. 

The bet can now be recast in the p,S system, as a contract in which 
X receives S(l - p) if a is true, and loses pS if not. Suppose S is fixed 
and p allowed to vary. If you have very clear ideas about the likelihood 
of a, then there will be a value of p below which you see an advantage 
to X, and at that value and above you see an advantage to Y. We can 
call this cross-over value your degree of belief in a. It might be that you 
do not have such clear opinions that you can determine a unique cross- 
over value. It might be that there is merely an interval of values; if this 
is so, the lower endpoint is called your lower probability of a, and the 
upper endpoint your upper probability of a. Classical Bayesianism is 
an idealising theory which supposes that upper and lower probabilities 
coincide for every proposition (for what happens when this assumption 
is relaxed see Walley 1991). 

Now let us see why degrees of belief so measured should be formally 
probabilities. Consider a system of bets on a set of specified proposi- 
tions. De Finetti showed (though Ramsey also knew the result, which 
requires only elementary algebra to prove) that if the bookmaker has 
no control over the magnitude and sign of the stakes, then they can be 
made to lose a positive sum independently of the truth-values of the 
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propositions bet on if their betting quotients do not satisfy the (finitely 
or countably) additive probability axioms: the bookmaker can have a 
Dutch Book made against them, in betting jargon, and for this reason 
Ramsey's and de Finetti's result is usually called the Dutch Book Ar- 
gument. 

Of course, one is usually in no danger of being placed oneself in such 
a betting situation. Nor is it realistic to suppose that all the propositions 
whose truth-values one has opinions about will have their truth-values 
veraciously decided in one's lifetime if ever. But the scenario above 
should not be taken literally; the way to see what it tells us is to regard 
it as a thought-experiment (Howson and Urbach 1993, Ch. 5; Hellman, 
this volume). Thus, suppose the betting quotients involved are your 
cross-over ones. This means that they are fair in your eyes, in that you 
believe that they equilibrate the advantage between the two sides of the 
bet. But if they do not obey the probability axioms then it is possible 
to arrange the bets in such a way that you can calculate in advance 
that the bookmaker must lose. This seems to mean that your assess- 
ment of each as fair is erroneous. 

Of course, we need an assumption that bets that are individually fair 
cannot in combination generate a positive net loss or gain in all cir- 
cumstances, but this seems a reasonable assumption, and if we equate 
'calculable advantage' with 'expected value' then it is a demonstrably 
true one (Howson and Urbach 1993; Hellman, this volume). Granted 
all this, de Finetti's result implies that a necessary condition for betting 
quotients to be fair is that they satisfy the probability axioms. Thus 
you are demonstrably inconsistent in your assessment of fair betting 
quotients if they are not formally probabilities. 

The converse is also provable: if your fair betting quotients are for- 
mally probabilities then it is impossible to force a net gain or loss in 
all circumstances. De Finetti called a set of beliefs coherent if the betting 
quotients they represent is immune to a Dutch Book. Ramsey used the 
overtly logical language of consistency. I shall follow Ramsey because, 
just as did Ramsey himself, I shall claim later on that implicit in the 
view of the probability calculus as a set of consistency constraints on 
betting quotients is that of the calculus as a set of demonstrably sound 
logical axioms in an inductive logic. 

Maher has objected that this way of measuring belief, and the Dutch 
Book argument based on it, rest on assumptions which are false: in 
particular, that the value of p which you think gives zero advantage to 
the bettor is independent of S if S is measured in non-utility units 
(1997). Maher supports this claim by reference to a dictionary of the 
English language, according to which 'advantage' can be glossed as 
'benefit, profit or gain' (ibid.). He points out that a bet at even odds 
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on the outcome of a toss of a fair coin with a stake of $10 would have 
zero advantage to him, while one with a stake of $10,000 would defi- 
nitely be disadvantageous, because there would be a 'benefit, profit or 
gain' in ridding himself of it; indeed, he would pay to do so. 

But consider this. The definition of 'computable7 given by the Ox- 
ford English Dictionary is 'calculable'. However, the function f from 
natural numbers to natural numbers defined by 

f(x) = 1 if Goldbach's Conjecture is true 
= 0 if not 

is not at present, and possibly may never be, calculable. Yet (assuming 
a mild Platonism) f is a constant function and so is computable ac- 
cording to Turing, Markov, GodelIHerbrand and Church, all of whom 
explicated what they thought to be essential features of the preformal 
notion of computability, in ways that turned out to be equivalent and 
which are now the basis of the mathematical theory of computability. 

Let us return to bets. Following a long tradition, I have understood 
'advantage' as a bias in a bet, so that the advantage to you in a bet 
against me is equal to the advantage to me if and only if the advantage 
to both is zero, with zero advantages adding over bets. A fair bet is 
one in which there is no advantage. These properties of 'advantage7 
were traditionally explicated as expected cash value: Laplace explicitly 
defines 'advantage7 in this way (1951, 20). That explication is notpre- 
supposed (see Maher 1987); but it is an illuminating way, once partial 
belief is represented by probabilities, of giving mathematical expression 
to the idea that a bet at even money on heads with a throw of a fair 
coin is fair, independently of the stake and the fortunes of the players. 
Maher, who sees a positive disadvantage to either side of that bet where 
the stake is $10,000, is clearly appealing to an entirely different idea, 
one which as he tells us is explicated in terms of utility. To me, as to 
Hellman (1977), utility, even if one can make satisfactory sense of it 
(and the evidence is increasingly unfavorable), is conceptually quite 
distinct from judgments of the biasedness or otherwise of bets. 

Maher is not alone, however, in (as I believe) conflating the two 
notions: many people, Ramsey included, are convinced that belief can 
be measured by the agent's fair betting quotients only if all payoffs are 
expressed in utility units. Ramsey explicitly developed his theory of 
utility for this purpose and his procedure has become classic: it was to 
state plausible axioms for consistent preferences among options, in 
such a way that it can be proved that those axioms determine (i) a 
unique probability function, (ii) a utility function unique up to positive 
affine transformations, and (iii) the ranking of options by expected 
utilities. Savage later provided a different set of axioms to Ramsey's, 
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which became canonical for later work in the field (Savage 1954; in 
Ramsey's theory an agent's probability is explicitly defined as their 
utility-valued betting quotients, whereas in Savage's they are obtained, 
like the utilities, by a representation theorem). The expected utility 
principle is, however, charged with yielding strongly counterintui- 
tive evaluations, and its status remains controversial (the current de- 
bate is nicely represented in the collection of Gardenfors and Sahlin 
1988). 

Yet another approach, also due to de Finetti, exhibits betting in the 
wider context of so-called scoring rules; subsequently Lindley showed 
that virtually any set of scoring rules leads to the probability axioms 
(Lindley 1982). The view implicit in all these results is that probabilism 
is the theory of consistent personal probability assignments, which has 
the consequence that those assignments are formally speaking no more 
than exogenously determined parameters. Why, in this case, is new 
probabilism any advance on old probabilism? Take for example the 
old problem of representing ignorance. Where uncertainty is modelled 
probabilistically, uniform uncertainty, across all transformations of a 
parameter t, is mathematically impossible. Since new probabilism sees 
the probability axioms as necessary and sufficient conditions of con- 
sistency, no prior distribution is endorsed by it. All it tells you is that 
if your uncertainty about t is given by a uniform density over t, then 
your uncertainty about s(t) should be given by a density proportional 
to Idsldtl. 

But it is precisely the refusal to legislate about prior distributions, 
of course, that has drawn the strongest criticism, and specifically the 
charge that virtually anything is permitted. Indeed, the theory does 
seem to represent just the sort of psychologism that Fisher condemned 
as useless to science in the quotation earlier. There is a response to this 
standard objection that I believe is quite satisfactory, however, and 
that is to deny that such a theory is useless to science. On the contrary, 
to possess a demonstrably sound inductive logic, one whose pro- 
nouncements are both non-empty and avoid the force of Hume's pow- 
erful sceptical arguments, is a great intellectual achievement, on a par 
in significance with the contemporary development of formal deductive 
logic, also of course 'merely' a logic of consistency. 

For new probabilism is indeed a genuine logic. The probability ax- 
ioms are a sound and complete syntax with respect to the semantic 
criterion of consistency-coherence. Second, it is a genuinely inductive 
logic. The relation between evidence e and a hypothesis h is expressed 
in the conditional probability P(h1e). There are many theorems of the 
probability calculus which express the inductive character of the rela- 
tion. Here are two of the most fundamental: 
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(1) If 0 < P(h), P(e) < 1 and h entails e then P(h1e) > P(h). In 
other words, if e is a prediction of h then, just so long as you 
do not have unalterably dogmatic opinions about h and e, the 
truth of e increases the probability of h. 

This formula, a form of Bayes's Theorem, tells us that P(h1e) is sensitive 
to the proportional degree to which e is explained by h as opposed to 
any other plausible alternative hypotheses. This expresses a basic prin- 
ciple of good experimental design: it should be very unlikely that the 
sought effect e can be attributed to any cause other than h itself. 

This inductive logic is immune to Humean objections because it 
makes no categorical assertion about the probability of any contingent 
proposition. And yet it is far from useless to science, because scientific 
inference requires sound rules, and sound rules are certainly provided 
by the theorems above (and all the other consequences of the proba- 
bility axioms). We shall see dramatic evidence in the next section of 
the perils of being guided by an unsound theory. 

4. Infirmities of Neyman-Pearson Theory. The Neyman-Pearson theory 
is at first sight weaker than the Bayesian in scope if nothing else, be- 
cause of its apparent restriction to hypotheses: the Bayesian theory is 
completely general. However, first Giere (1984) and then Mayo (1996) 
have generalized the Neyman-Pearson ideas beyond purely statistical 
hypotheses, and claim validity for those ideas for scientific data and 
hypotheses in general. I shall argue in this section that the exercise is 
to no avail, since acceptance and rejection rules based solely on the 
chances of type 1 and type 2 errors, or what Mayo calls error proba- 
bilities, are demonstrably unsound. To avoid clumsy constructions I 
shall henceforward talk simply about large and small type 1 and type 
2 errors, rather than large and small chances of type 1 and type 2 errors. 

Neyman's justification of those rules is well-known. He argued that 
by repeatedly making the decisions to accept and reject supplied by a 
test with small type 1 and type 2 errors you will make those errors only 
a small proportion of the time. This answer has been heavily criticized, 
not least by Fisher, on the grounds that while it might be relevant to 
quality control, i.e., to keeping the number of defective products within 
preassigned limits, but is quite irrelevant to the evaluation of a scientific 
hypothesis, which is essentially unique. 

While Fisher's objection is perfectly correct in my opinion, I do not 
believe that it gets to the heart of the matter, which is that error prob- 
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abilities, however glossed in terms of frequencies or whatever, are the 
wrong probabilities to consult. I shall show this by means of a simple 
counterexample, and then discuss its lessons. The counterexample is of 
a well-known type. Consider a diagnostic test for a disease, with two 
outcomes 'positive' and 'negative', whose intended meaning is 'has the 
disease' and 'does not have the disease'. The test is administered to 
randomly selected subjects in a population in which the incidence of 
the disease is very high, say 999 in 1000. Suppose the test has a false 
positive rate of 0, i.e., the chance of it erroneously registering the pres- 
ence of the disease is 0, and a false negative rate of 0.5; i.e., the chance 
of it erroneously registering the absence of the disease is 0.5. If the null 
hypothesis is b: the subject does not have the disease, then the test has 
very small chances of committing both type 1 and type 2 errors, of 0 
and .05 respectively. Yet it is easy to see that the chance of h, being 
true when the test registers 'negative' is under 2% (. 196 to be precise). 
In other words, the proportion of those testing disease-free who actu- 
ally have the disease is almost loo%! 

Thus a test with excellent error characteristics, i.e., very low type 1 
and type 2 errors, has an extremely high chance of accepting a hy- 
pothesis when it is false. But how can that be? We are told in statistics 
textbooks of the NP persuasion that the chance of accepting a hypoth- 
esis when it is false is defined to be the chance of making a type 2 error. 
The solution to the apparent paradox is that the ordinary language 
functor 'the probability of accepting a false hypothesis h' can be ren- 
dered as two quite different conditional probabilities: (i) the probability 
of h being false conditional on its being accepted, and (ii) the proba- 
bility of h being accepted conditional on its being false. Only in excep- 
tional circumstances are these conditional probabilities identical; in- 
deed, we have the relation 

which is an easy rewriting of (2) above. (ii) is of course the chance of 
making a type 2 error, but what everyone really wants to know from 
the outcome of the test is (ii), and (3) tells us that (ii) by itself does not 
provide this; indeed, (3) shows just how (ii) can be very small consis- 
tently with (i) being very large. 

The message by (3) conveyed is radical: error probabilities of a test 
are no guide to the correctness or reliability of the hypothesis tested. 
Mayo rewords the NP criteria as the demand that tests which 'reliably' 
pass a hypothesis, or 'indicate its correctness', are just the severe ones, 
where severity is defined as having a very small type 2 error. But 'cor- 
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rectness' is a (i)-quality, and (3) shows that it is definitely not reliably 
indicated by the smallness of (ii). Thus NP criteria are simply fallacious, 
or, in logicians' terminology, demonstrably unsound rules of (induc- 
tive) inference. 

5. Subjectivism. It is not surprising, in view of the difficulty of distin- 
guishing the conditional probabilities (i) and (ii) above in the informal 
expression of what a type 2 error is, that NP ideas have been so tena- 
cious. It is surprising that the fallacious nature of NP inferences is 
taking so long to be recognized. Perhaps this is due to a reluctance to 
embrace probabilism, which explains precisely in equation (3) above 
why the NP-criteria do not suffice, with its apparent inability to deliver 
the desirable goods of inferences uncontaminated by the agent's per- 
sonal prejudice. In this section, I shall try to mitigate this apparent 
disability by arguing that personal opinion is ineradicable. 

That it is ineradicable is the corollary of Hume's sceptical argu- 
ments, arguments that nobody has yet been able to refute. And there 
is very good reason to suppose nobody ever will, since these arguments 
at bottom rest on a clear logical fact, the underdetermination of theory 
by observation. All our theoretical constructs, while we hope they are 
empirically based, are nevertheless not determined uniquely by expe- 
rience. That is to say, they are not derivable from experience. This is 
hardly surprising: experience in its raw state not being propositional, 
derivability in any logical sense is clearly out of the question. Thus any 
inference to the correctness of theory, or to its reliability, is necessarily 
uncertain. You can put figures on the uncertainty if you want, but as 
Hume noted these too will be uncertain. In other words, subjectivism 
is ineliminable. Q.E.D. 

Since it is ineliminable, an honest theory of uncertain inference will 
display the uncertainty explicitly. Probabilism does so, in the form of 
its exogenously determined priors. But nagging doubts are hard to 
quell. Surely (I have heard people say this) no adequate theory can 
make it anything other than rational to believe that Pan Am 103 (the 
flight that terminated in the Lockerbie disaster of 1987) was downed 
by a bomb, given the overwhelming evidence to that effect. Yet a 
clever-or perhaps a stupid-Bayesian can consistently, and hence in 
terms of that theory rationally, doubt it. Therefore the Bayesian theory 
is not an adequate theory. What can be said to this? 

The answer the Bayesian should give is the same as the answer that 
should be given by someone who had never heard of Bayesianism, and 
it goes like this. The limits of belief and behavior beyond which we 
classify people as irrational are difficult to define. I think we would be 
strongly tempted to view as irrational someone who said, as Achilles 
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said to the tortoise in Lewis Carroll's fable, that they believed a prop- 
osition a, and they believed 'if a then b', but they did not see any reason 
to believe b. But the Bayesian theory views them as irrational as well. 
Where there seems to be sound reasoning from bizarre premises is a 
different matter, however, and I myself do not believe that we would 
invariably cast this type of pathology as irrationality; 'mad' is the more 
likely epithet. 

One (fortunately) does not have to appeal to madness to make the 
point. There are certainly non-fanatics who still refuse to allow that 
the facts say what most people think they say. Einstein famously, or 
perhaps notoriously, was unwilling to allow that God played dice with 
the world, in the teeth of evidence that, via a physical theory, strongly 
suggested otherwise. Was he irrational? It is not clear. It is a common- 
place in current philosophy of science that evidence never bears an 
unambiguous interpretation; in other words, it is never unambiguous 
what exactly evidence is evidence for (or against). This is of course just 
the underdetermination thesis, also known now as Duhem's problem. 
And we have seen that an honest epistemological theory must concede 
an ineliminable uncertainty to the truth of the theoretical, explanatory 
constructs we erect on the basis of experience. This infects the diagnosis 
of Pan Am 103 just it does the evaluation of quantum chromodynam- 
ics. The response the Bayesian should give to the charge of not being 
able to prove irrational any but the bomb hypothesis is that they are 
indeed guilty as charged, but that since there must be room for doubt 
there is room for reasonable doubt, in that and any other contingent 
hypothesis. 

That is not by any means all that can be said on Duhem's problem, 
as a succession of Bayesian analyses have shown: Hellman, etc. Gen- 
erally speaking, the response of non-Bayesians to these is that they 
depend on a suitable distribution of prior probabilities (for example, 
Mayo 1996). But the answer to this charge is to separate it into its 
descriptive and normative components. Normatively speaking, it is 
true that the priors are not constrained by the theory, but we have seen 
that this is far from the telling objection it is often thought to be. As 
to the descriptive component, the response is that, as far as historical 
analyses are concerned, the priors are an attempt to represent the actual 
beliefs of the people involved. 

It is sometimes claimed by Bayesians that objectivity is not sacrificed 
in having undetermined priors, because the posterior distribution 
P(hllel& . . . &en) typically becomes independent of the prior distribu- 
tion in the limit. Where the posterior distribution is obtained from a 
prior density for a continuous parameter, that nowhere vanishes, and 
a likelihood function based on an independent identically distributed 
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sample this is indeed the case, since the the posterior distribution tends 
to the normal with the sample mean and standard deviation. The as- 
sumption of independence with common distribution is dispensed with 
in more general, 'with probability one' results. For example, if two 
prior distributions agree on their probability zero events, then with 
probability one the then the supremum distance between the posterior 
distributions, regarded as random variables depending on the sample, 
tends to zero (Blackwell and Dubins 1962). Another result is that if I, 
is the indicator function of any proposition defined in the sample space 
of the outcomes of repeated observations, then with probability one 
the posterior probability of h tends to I,, i.e. to one if h is true and 0 
if not (Halmos 1950,213, Theorem B). A similar result is proved in an 
explicitly logical setting by Gaifman and Snir (1980; for a longer dis- 
cussion see Earman 1992 and Hellman, this volume). 

These results should be interpreted with caution. Even were they not 
'with probability one' results, they still talk about limiting distributions, 
and do not therefore say what will or will not happen in any finite time. 
And in addition as probability one results they say nothing about what 
will definitely happen now or at infinity, merely what you are a priori 
certain will happen, a quite different thing. In other words these 
'merger of opinion' theorems, though remarkable in themselves, are of 
doubtful efficacy in restoring objectivity to the Bayesian enterprise. But 
to assume that the theory is in deficit on the objectively grounded true 
methodological judgments that can be made begs the question that it 
is possible to make objectively correct judgments where that theory 
fails to do so. This is a claim that is unsubstantiated and which there 
seems reason to doubt. We have seen that the claim of superiority on 
this score made by a rival account, Neyman-Pearson theory, is unten- 
able: that theory's apparently greater power generates unsound falla- 
cious inferences. 

That there is an objectively determinate yestno answer to every sen- 
sible theoretical question assumes attainable a degree of completeness 
which the limitative results of Godel, Church, Tarski, Cohen and oth- 
ers in this century have shown to be not to be the case. There is no 
more reason to assume it true in the domain of methodology. Indeed, 
it is entirely possible that the Bayesian theory represents the limit of 
completeness, and that any increase in theoretical power will generate 
unsoundness. It is of course impossible to prove this, but just as we 
feel we have evidence for the correctness of Church's Thesis (that every 
computable number-theoretic partial function is partial recursive) fall- 
ing short of an in-principle unattainable formal proof, so I believe that 
we have evidence for the correctness of this claim in the cluster of 
results that Lindley regards as showing 'the inevitability of probability' 
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(1 982), together with the failure of alternative methodological accounts 
to deliver sound inferences where the Bayesian theory cannot. 

6. Updating Rules. Up to the second decade of the twentieth century a 
posterior probability, intended to represent your new judgment about 
the probability of a hypothesis h on receipt of data e, was expressed in 
what is now called conditional probability form: P(h1e). Kolmogorov's 
celebrated monograph (1950), and the work of Ramsey and de Finetti, 
conceptually unlinked the posterior probability conceptually from the 
conditional probability. Now the conditional probability P(h1e) is taken 
to be just as much a prior probability as the unconditional probability 
P(h) of h. Kolmogorov had simply defined P(h1e) as P(elh)/P(e) where 
P(e) > 0. In the Dutch Book Argument for the probability axioms, 
P(h1e) and P(h) are both regarded as betting quotients for bets exam- 
ined at the same time T. P(h) is just your fair betting quotient at T, 
and P(h1e) is your betting quotient at T in a bet on h that will go ahead 
if and only if e is true; such a bet is called a conditional bet on h. 

So P(h1e) is your conditional fair betting quotient, part of your total 
system of fair betting quotients, conditional and otherwise, at T. So 
what should you do if you do learn e to be true? As Ian Hacking noted 
in an influential paper (1967), there is nothing in the contemporary 
Bayesian theory that tells you, though there certainly seemed an un- 
written rule: If you learn e and no more, then your updated (posterior) 
probability function Q ( . )  should be equal to P(. le). What happened is 
that the rule became explicit and, under the name of Bayesian Condi- 
tionalization, added by most commentators to the synchronous proba- 
bility axioms as a diachronic, or dynamic, rule. The synchronous axi- 
oms and the dynamic rule of conditionalization for most people 
constitute the modern Bayesian theory of inference. 

The dynamic rule is clearly not a consequence of the probability 
axioms. On the other hand, if it is part of the core Bayesian theory, 
and the theory is a theory of coherent belief, then there presumably 
can be some coherence argument for the rule. In 1973 Paul Teller pro- 
duced a Dutch Book argument for conditionalization, acknowledging 
that the idea for it had come from David Lewis. The idea was this. The 
way you respond to new factual information e should not be a hap- 
hazard affair, but controlled by some rule. Then anyone who knows 
your updating rule can, if you are prepared to bet at all your fair betting 
rates, force you to lose money if that rule is not conditionalization. The 
proof is simple. Let your fair betting quotient in a conditional bet on 
h given e be p, and on e be r. Suppose your updating rule sets Q(h), 
your updated probability of h after learning e, equal to r#p; suppose 
in fact that r < p. Now suppose the following bets are made: (i) a 
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conditional bet on h given e with betting quotient p and stake 1; (ii) a 
bet on e at betting quotient q and stake p-r; and (iii) if e is true, a bet 
against h at betting quotient r with stake 1. The net gain from these 
bets is the negative quantity q(r-p); i.e., whoever made these bets would 
lose whatever the truth-values of h and e, and so have a Dutch Book 
made against them. 

7. Jeffrey Conditionalization. Thus we seem to have a coherence ar- 
gument for the rule of conditionalization no different, mutatis mutan- 
dis, from those for the probability axioms themselves. It also turned 
out that the scope of coherence arguments was not exhausted by this 
result. Richard Jeffrey had considered the possibility of a shift in your 
belief function, not as here as the result of learning the truth of a prop- 
osition, but as the result of some sensory experience. In Jeffreys's ex- 
ample, you inspect a piece of material in poor light, and your initial 
probability p that it is green, say, before the inspection is thereby 
changed to some new value q (1983). 

This example generalizes what happens in Bayesian conditionali- 
zation because any values at all are allowed for p and q apart from p 
= 0, whereas in Bayesian conditionalization the new probability Q(e) 
of the conditioning proposition e is 1 (since Q(e) = P(e1e) = 1). How 
should we update the remainder of our probability function in the light 
of this exogenous shift? It is logically possible, of course, that there is 
simply no determinate answer to this question, but Jeffrey suggested 
the following rule, which is now called variously Jeffvey conditionali- 
zation, probability kinematics, or just Jeffrey's rule. I shall call it the 
last of these names. In the example it looks like a single proposition 
that has its probability shifted initially, the proposition g that the ma- 
terial is green. But if the agent is a coherent Bayesian, there will in fact 
be two propositions, g and ~ g ,  which have their probabilities shifted 
initially to q, 1-q. The pair {g, lg) is a partition, and Jeffrey's rule at 
its most general is stated for an arbitrary discrete partition (e,, e,, . . . ) 
whose probabilities, initially all nonzero, shift to q,, q,, . . . as follows: 

Q(.> = %P(. 14 ,  

where Q is the updated function. Where the partition is just the pair 
g , ~ g  Jeffrey's rule clearly reduces to 

Jeffrey's rule has some interesting properties. For simplicity I shall state 
them for the pair case (4), but they are immediately generalizable. First, 
given that Q(g) = q, (4) is equivalent to the pair of identities 
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P ( l d  = Q(.lg), V.1 1 g) = Q(.I 1 g). 

Second, as q tends to 1, (2) tends continuously to 

Q(.> = P(.lg) 

i.e., to Bayesian conditionalization. Call a Jeffrey shift non-extreme if 
q < 1. Then, thirdly, if you change your mind about a shift that is non- 
extreme and wish to return to the status quo ante, you can reverse the 
updating (4) by another application of (4) to recover your original 
probability function. You can't do this with Bayesian conditionaliza- 
tion: once you shift to a new probability of 1 on any proposition your 
original probability function is not reversible by a further Bayesian 
conditionalization. Finally, again unlike Bayesian conditionalization, 
the order in which you update on sequential shifts may give distinct 
final updated functions. 

What is important for the present discussion is that there is a Dutch 
Book argument for Jeffrey's rule. Armendt (1980) shows that anyone 
who has an updating rule which violates the identities (5) can have a 
Dutch Book made against them by someone who knows their rule. So 
Jeffrey's conjecture that his rule is also a sound one, in terms of the 
coherence criterion, seems to be correct. The following example shows 
that all is not as well as it seems, for Bayesian conditionalization and 
hence, because that is a special case of Jeffrey conditionalization, for 
Jeffrey's rule itself. Suppose someone knows that a drug will be ad- 
ministered to them which has a nonzero chance of making them un- 
certain about things they were, and currently are, certain about. Let a 
be some such factual proposition, about your identity, for example. So 
P(a) = 1. Let Q be a random variable whose possible values are your 
degrees of belief in a after taking the drug. You assign a non-vanishing 
chance to your coming to doubt a. Let b be this proposition. So P(b) 
> 0. It follows by coherence that P(a1b) = 1. Now suppose you do in 
fact, through introspection, learn the truth of b after taking the drug. 
But you cannot (Bayesian) conditionalize on b on learning its truth in 
this way, for if b is true it means that your new probability Q(a) of a 
is less than 1. 

8. Why Dynamic Dutch Book Arguments Fail to Provide a Standard of 
Consistency. In other words, you cannot consistently conditionalize on 
b if you learn its truth directly. Long ago, Ramsey (1931) had pointed 
out that learning the truth of the conditioning proposition might well 
act as a shock forcing you, 'for psychological reasons', to violate Bayes- 
ian conditionalization. As we have just seen, there may also be purely 
logical reasons for violating it. This leaves the status of dynamic Dutch 



A LOGIC OF INDUCTION 287 

Book arguments, allegedly showing that Bayesian and Jeffrey condi- 
tionalization are generally valid coherence constraints, unclear. To go 
further we must make a clear separation between coherence and con- 
sistency. In the discussion of the Dutch Book argument for the prob- 
ability axioms these concepts were in effect identified, because they 
seemed to be equivalent. Indeed, for synchronic degrees of belief I be- 
lieve they are equivalent. But not for diachronic. It is easy to see this. 
First, note that a synchronically coherent assignment can be dynami- 
cally incoherent. We have a ready-made example. Let a and b be as 
above, except that we shall assume that b now assigns a precise prob- 
ability r less than 1 to a. By synchronic coherence, P(a1b) = 1. In the 
Lewis-Teller dynamic Dutch Book argument above let h be a and e be 
b; p is now 1. On learning b your probability for a is now r. Suppose 
the same three bets are made. Then the bettor loses come what may. 
So the dynamic Dutch Book for conditionalization now shows that the 
assignment P(a1b) = 1 is dynamically incoherent. 

If there are good reasons to equate synchronic coherence with the 
consistency of the corresponding synchronic degrees of belief, then the 
simple counterexample above shows that dynamic incoherence cannot 
be equated inconsistency. The conclusion seems inescapable that dy- 
namic incoherence indicates nothing of any logical or epistemological 
interest. There is also a quite independent and rather simple argument 
to the same conclusion. I am inconsistent if I accept both A and 7A 
as true simultaneously. I am not inconsistent if I accept A today and 
--,A tomorrow. I have merely changed my mind. My 'rule' for updating 
my probability for a on learning b must, if I appreciate the meanings 
of the words involved, give a a probability less than 1. I am not incon- 
sistent in planning, in the appropriate circumstances, to entertain a 
degree of belief in a different from that which I have today; I merely 
know that those circumstances are a change of mind. It is quite beside 
the point that from my present perspective the change of mind is ir- 
rational. It is the entirely rational claim that I may be induced to act 
irrationally that the dynamic Dutch book argument, absurdly, would 
condemn as incoherent. 

As a coda to this section I shall mention a discussion a decade ago 
of something called the Principle of Reflection. Suppose that C is a 
random variable whose values are your possible degrees of belief in 
some proposition c tomorrow, and that P is your current probability 
function. The equation P(clC = x) = x, for all c in the domain of P 
and all x in [0,1], has been called by van Fraassen the Principle of 
Reflection (1984). He argued its validity because it has, as we have 
seen, a dynamic Dutch Book argument for it. But as we now know, 
that is not a good reason. 
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9. Where Does This Leave the Updating Rules? Where indeed? I shall 
argue that the possibly surprising thesis that the Bayesian theory has 
no such rules, except in a derivative form in which they are essentially 
redundant. I shall start with Bayesian conditionalization. Suppose you 
make some observation as a result of which you become convinced of 
the truth of a proposition e; i.e., your probability of e shifts exoge- 
nously from p < 1 to 1. This determines the value of your new prob- 
ability function on one point, namely e. So Q(e) = 1. Suppose also 
that learning e did nothing to affect the values of your conditional 
probabilities, on e, in every other proposition in the domain of P. This 
supplies further, conditional, values for Q; namely, Q(. le) = P(. le). 
But now Q is fully determined, if you are synchronically coherent, since 
by the probability calculus Q(.) = Q(. le) [since Q(e) = 11 = P(. le). 
Not only is Q fully determined, but it is determined to obey Bayesian 
conditionalization! But this is not a proof of an unconditional rule of 
Bayesian conditionalization, since it clearly depends on the identities 
P(. le) = Q(. le). In the counterexample exhibited earlier, with theprop- 
ositions a and b, these identities are violated, since P(a1b) = 1 and 
Q(alb) = Q(a) < 1. 

Now recall from another earlier discussion that Jeffrey's rule (3), 
given Q(e) = q, is equivalent to all the pairs of identities P(. le) = 
Q(. le) and P(. lie) = Q(. lie), which reduce to P(. le) = Q(. le) when 
q is 1. In other words, it is a theorem of the probability calculus that 
Bayesian and Jeffrey conditionalization are equivalent to essentially the 
same set of conditional probabilities remaining unchanged by the shift 
on e. And, given that there are counterexamples to Bayesian condi- 
tionalization (and hence to Jeffrey's rule too, since it subsumes Bayes- 
ian conditionalization as a special case), and these clearly entail a 
change in just those conditional probabilities, the conclusion seems 
very plausible that Bayesian and Jeffrey conditionalization are derivative 
rules of the synchronic probability calculus, validjust in case the relevant 
conditional probabilities remain unchanged by the shift. The situation is 
quite analogous to that with modus ponens, as Hellman has remarked 
(this volume): one is entitled to detach d from c and 'if c then d' if and 
only if you accept both premises simultaneously; and you would not 
be so entitled had the learning of c caused you to reject the conditional 
'if c then d'. 

I myself think that this conclusion is correct. It is true that there 
have been attempts to derive these rules from other general principles, 
like a minimum information principle (Williams 1980), symmetry prin- 
ciples (van Fraassen 1989), and so on. These derivations are of consid- 
erable independent logical interest, but they hardly justify the updating 
rules themselves, if the foregoing arguments are correct, because these 
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rules possess no general validity, and to the extent that they are con- 
ditionally valid this is established by means of the probability axioms 
themselves. 

And where does this conclusion leave the Bayesian theory? I have 
endeavored to describe the theory in such a way that it does not depend 
on any updating rule. This does not immediately cast doubt, or more 
than there was before, on the validity of such classical results as the 
convergence of opinion theorems, since these are framed in terms of 
your prior probability that your prior conditional probability will ex- 
hibit suitable convergence behavior. I claim that nothing valuable is 
lost by abandoning updating rules. The idea that the only updating 
policy sanctioned by the Bayesian theory is updating by conditionali- 
zation was untenable even on its own terms, since the learning of each 
conditioning proposition could not itself have been by conditionali- 
zation. 

10. Conclusion. The Bayesian theory hasbeen around a long time, 
longer than any other theory of inductive inference still with us. It 
provides a sounder basis for inductive inference that any developed 
from its principal rival, classical refutationist statistics, as Section 4 
above demonstrates. The latter's vaunted objectivism is seen to be not 
a strength at all, but a generator of unsound inferences. Why it is taking 
the statistics community so long to recognize the essentially fallacious 
nature of NP logic is difficult to say, but I am reasonably confident in 
predicting that it will not last much longer. Indeed, the tide already 
seems strongly on the turn. 
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